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Abstract

It is shown that, when account is taken of the temperature dependence of the electrical
conductivity of a medium in steady-state conditions, the electrical potential obeys a quasi-lin-
ear, second-order partial differential equation. The equation is shown to be easily solved by
means of a generalized Kirchhoff transformation, giving coordinate-free solutions in terms of
functions which obey Laplace’s equation. Steady-state temperatures resulting from the poten-
tial are shown to be significantly influenced by the quasi-linear potential when compared with
the expected form which assumes the potential to satisfy Laplace’s equation.

1. Introduction

Engineering problems involving theoretical analyses of material temperatures produced by
electrical current flow through various types of contacts generally encounter the problem of
determining the form of the potential responsible for those current distributions. (See for
instance Bryant and Burton [3], Bryant and Oh [4] and Chen and Burton [5]). The usual
assumption then made is that the potential can be obtained as a solution to Laplace’s equation.
It has recently been pointed out [8], however, that when the temperature dependence of the
electrical conductivity is taken into account, the potential will not obey the simple linear
equation of Laplace. In fact it was shown there that within a typical metal under steady-state
conditions, which would be expected if surface cooling were provided, the potential will obey a
second-order quasi-linear partial differential equation. The remarkable feature of this equation
is the fact that it is easily linearized and yields solutions for the potential in terms of functions
which do satisfy Laplace’s equation.

The present work has the following purposes: (1) to show that the “quasi-linear potential” is
but a member of a class of solutions obtainable by what amounts to a generalized Kirchhoff
transformation; (2) to indicate the significance of the quasi-linear potential by illustrating its
difference from the (“linear”) potential which does satisfy Laplace’s equation; (3) to illustrate
the differences in the resulting steady-state temperature due to Joule heating according to
whether the potential is assumed to satisfy Laplace’s equation, corresponding to constant
conductivities, or the quasi-linear equation, corresponding to a temperature-dependent electri-
cal conductivity.

2. The quasi-linear equation

A steady-state current density J has, by definition, zero divergence. Within an Ohmic medium
having electrical conductivity ¢ the current density can be expressed in terms of the gradient of
the electrical potential, @, as

J=—0ov®. (1)
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The condition that ¥ -J =0 immediately gives the result that ® satisfies Laplace’s equation
provided that o is constant.

Electrical conductivities, however, vary approximately inversely with temperature and the
inclusion of conductivity changes with an appreciable temperature variation leads to quite a
different picture. For a metal, the electrical and thermal conductivities (k) depend on (absolute)
temperature in a manner described by the Weidemann-Franz law,

X T, )

where the Lorenz number, a, has the value 2.445 X 1078 WQ/°K [7].
The condition that J have zero divergence gives, for variable g,

V0 +(1/0)ve-vT=0. (3)

The electrical conductivity gradient can be expressed in terms of a temperature gradient which
gives, upon using (2) along with the fact that « is essentially constant for a typical metal above
room temperature,

v2® - (1/T)vT-vT=0. (4)

It was shown in [8] that the steady-state temperature in the case of applicability of the
Weidmann-Franz law can be functionally related to the potential as

T(®) = 71;—[c— (@-cy"” 5)

wherein C and C’ are integration constants. It is noteworthy that (5) depends only on the ratio
of thermal to electrical conductivity; it does not depend on either conductivity individually.
Use of this result allows (4) to be expressed as

— ’

v2<I>+—q)—C——2(v<I>)2=0. (6)

cC—-(®-C)

Thus, when account is taken of the fact that the electrical conductivity is (inversely)
dependent upon temperature while the thermal conductivity is, at least to good approximation,
constant the potential responsible for maintaining steady-state currents is seen to obey a
quasi-linear equation. Formidable through (6) might appear to be, it is shown in the next
section that a completely general, coordinate-free solution exists for any dimensionality. That
solution, when used in (5), will then give the steady-state temperature solution.

3. The quasi-linear solution
The form of (6) can be simplified by a rescaling of the potential. Letting
¢$=—(2-C’) ™

transforms (6) to

v+
(0] 1— &

¢ }(vqb)l:o. )
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When the transformation defined in (7) is used in the 7(®) expression the latter becomes

T(¢) = (%)1/2[1 -2 )

which makes it apparent that |¢| <1 in order that T be real.
Equation (8) is of the general form

V2% +f()(ve) =0. (10)

This equation is similar to a form discussed by Ames [2] and can easily be solved as follows.
Introduce an auxiliary potential function, x, as

VX=V¢ eXp{ff(cb) dqb}. (11)
It follows, by virtue of ¢ satisfying (10), that

vix =0, (12)

and is thus a function that is readily determined for any desired geometry. Equation (11) is
equivalent to the integral relation

x= [ exp| [7(6) do) do. (13)

For any f(¢), (10) has thus been solved by integration of (13); its subsequent inversion then
gives ¢ in terms of a function (x) which satisfies Laplace’s equation.

The transformation given by (11) actually amounts to nothing more than a generalization of
the Kirchhoff transformation utilized in heat-conduction problems in media in which the
thermal conductivity is temperature dependent [1]. If the function f($) can be expressed as the
logarithmic derivative, of some function A(¢),

16)= 107 St (14)

equation (11) then gives the ¢-x transformation as
Vx=A($)Ve. (15)
This is immediately recognized as the familiar Kirchhoff transformation.

In the case of present interest f(¢)=¢/(1 — ¢?). Substitution into (13) and inversion of the
subsequent integration yields

¢ =sin x. (16)
Finally, making use of the ¢-® relationship defined in (7) gives
®=C’'+ CY?%sin x. 17

The quasi-linear equation for ®, namely (6), has thus been solved in general, coordinate-free
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form applicable to any geometry. Use of this result in (5) then gives the general solution to the
steady-state temperature produced by the potential ®:

1,2
T=(§) COS X. (18)

4. An example

Appreciation of the quasi-linear potential and its significance might best be achieved by means
of the following illustration. Suppose that a solid electrical conducting sphere of radius R is
capped by a pair of electrodes which hold its northern and southern hemispheres at the
constant potentials + ¥, and —V}, respectively; that is

®(R,0)=+V,, o<o<%; ®(R, 0)=—V,, %<0<w. (19)
Electrical currents will then arise throughout the interior of the sphere due to the potential
within that region and cause its Joule heating. It will be supposed that the surface of the sphere
is maintained at the constant temperature T, so that a steady-state temperature distribution is
eventually attained.

Making use of the general solution given in (5) and requiring that the temperature be T, over
the entire surface of the sphere gives

T0=—‘/%[C—(+VO——C’)2]1/2 (20a)
and
T0=—‘/%[C—(—VO-C’)2]1/2. (20b)

These enable C and C’ to be evaluated, with the results

C=al7+ V3 C'=0. (21)
Use of these values in (17) gives for the potential

o(r, 8) =[aT? + V2] sin x(r, 6). (22)

The function x(r, 8) must now be determined so that ®(r, &) satisfies the conditions stated
in (19). It is evident that x is here an interior solution to Laplace’s equation and, in order that
the requirement that ® be an odd function of cos 8 be met, must be an odd function of cos 6.
Its most general form is then

x(r,8)= Z a2,+1r2[+1P2,+1(cos 8), (23)
/=0

where P,(cos ) is the Legendre polynomial of degree /. Use of (23) in (22) and imposing the
condition ®(R, 8) = +V, for 0 <§ <« /2 gives

™8

: (2

[

V
21+1 — an—1 0
ay, R¥*1P,,, (cos ) =sin [( T
0

“Toz + V02)
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The series coefficients can be evaluated upon multiplying by P,,,,;(p) and integrating over
p=cos 8§ from 0 to 1:

S/ T
(oT? + V2)"?

8

1 .
‘12/+1R21+1f0P2/+1(P)P21'+1(ﬂ) dp=sin 1{

[ Py(p) dp. (25

0

The integrals are given by Gradshteyn and Ryzhik [6]; these are

1 &y
_/(;P2/+1(P)P21'+1(“) dp= 4+ 3’ (26a)

_(=1)T(+1,2)
T 2T(1/2)T(1+2)

fOlel+1(ﬂ) du (26b)

The orthogonality indicated in the first of these allows the determination of the a,,, ,, giving
the result

Vi
®(r, ) =[aT2 + V2]"/? sin{sin"? ———0—7
(o + %5)

2 (=1)' 41+ DT +1/2) [ r\2+!
AP T (VAN (ES) (%) sz(coso)}.

(27)

It has been emphasized here that the temperature dependence of the electrical conductivity
mandates that steady-state current distributions are defined by a quasi-linear potential, of
which the expression given in (27) is an example. It would be expected that in the case of only
very modest temperature elevations attributed to small values of impressed potential, V,, that o
may, to good approximation be regarded as constant. Expansion of (27) for small ¥, im-
mediately yields the result

o (r, ) =Vox(r, 8), (28)

where x(r, 0) is the infinite series appearing in (27). This result says that for small ¥, the
potential will indeed be simply a solution to Laplace’s equation. Such a potential will hereafter
be designated by @, in order to distinguish it from the quasi-linear potential discussed here. (In
the other extreme of very large ¥V, the inverse sine function appearing in the argument in (27)
tends toward the value 7/2).

Figure 1 displays the differences between the quasi-linear potential and &, along the
direction § = 0° for values of ¥ chosen as 40, 80 and 120 mV. The curves indicate that the
quasi-linear potential is significantly different from @, at all points except, of course, at the
origin and on the surface. The magnitude of the differences is, as would be expected, clearly
dependent upon the size of V. Values in the southern hemisphere (8 = 180°) would be just the
mirror images of the curves shown in Fig. 1.

The form of the steady-state temperature distribution produced by Joule heating is depen-
dent upon the basic equation obeyed by the potential, i.e., the quasi-linear or Laplace equation.
In the former case T(®) is given by (5), or equivalently, by (18). The temperature distribution
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Fig. 1. Ratio of the potential to the impressed potential along the 8 = 0 direction. Solid curves give the ratio for the
quasilinear potential, while the dashed curve is the Laplace potential. Values of V,, are 40, 80 and 120 mV.

throughout the above sphere, whose electrical conductivity is inversely dependent upon
temperature, is given by

aT02 + V02

T(r,0)= J—l‘;-[aT02+ v cos{sin‘l['(_'V_OV}

X

2 (=1)/(4+)T(I+1/2) [ r ¥+
i—o 2T(/2)T(1+2) (ﬁ) P2/+1(C°S0)}.

(29)

The case of constant electrical conductivity (= g;), along with the assumption of constant
thermal conductivity (= k) has also been considered in [8]. It has been shown there that the
steady-state temperature in that case is given by the quadratic form

T(®,) = 4(a,/k0)[C— (@, — C")7], (30)

where again C and C’ are integration constants. If the conductivities in the sphere example are
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Fig. 2. Steady-state temperatures along the & = 0 direction. The solid curves plot the temperature for the temperature-
dependent conductivity, while the dashed curves assume constant conductivities. Values of ¥, are 40 and 80 mV.

assumed constant, C and C’ can again be determined by the requirement of the surface
temperature being T;,. Use of (28) for @, then gives

Vv 2 (=1) 41+ 3)T(1+1/2) [ r\2+1 2
T(r,0)=T,+ ﬁ{l—[,z:b 2T(,/2)T(1 +2) (}) P,,,(cos 0)} } (31)

wherein o;/k, = 1/aT; has been used.

It is worthy of mention at this point that the steady-state temperature solution given by
equation (12) in the work of Chen and Burton [5] is a member of the class of solutions given
here in (30). The direct use of (30) of the present work offers the obvious advantage that it is
only necessary to input the appropriate potential function, regardless of its dimensionality or
geometry. The same is true, of course, of the more realistic class of temperature solutions given
in (5).

Figure 2 compares the temperature solutions given in (29) and (31) for impressed potentials
of 40 and 80 mV. T; has been chosen at 273° K and the plots are represented on the Celsius
scale. The dashed curves, representing constant conductivity values, are seen to deviate from
the solid curves, which incorporate the Weidemann-Franz behavior, increasingly as the im-
pressed potential is made larger. The inverse temperature dependence of the electrical conduc-
tivity is the factor responsible for keeping the solid curves lower.
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5. Conclusion

It has been seen that taking into account the more realistic conductivity behavior of a metal
leads to more complicated mathematical considerations, but that these are easily managed. The
solution to the quasi-linear potential equation (6) for the case of constant thermal conductivity,
has been shown to be given quite generally by (17). The latter solution, derived by means of a
generalized Kirchhoff transformation, is valid for any geometry and dimensionality. (Although
that solution was presented in [8] and illustrated in one dimension, its complete derivation has
only more recently been realized). The differences between the quasi-linear and Laplace
potentials are evident and the former should be used whenever substantial temperature changes
are anticipated. The steady-state temperatures depend strongly on the form of the applicable
potential and highly erroneous results might arise in an analysis which fails to take this point
into account.
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